Total Synthesis of *dl*-Cephalotaxine. The First Example of an Intramolecular 4 + 2 Cycloaddition Where the Dienophile Has Been Delivered from the Face Opposite to the Tethering Moiety¹

T, P. Burkholder and P. L, Fuchs*

Department of Chemistry, Purdue University West Lafayette, Indiana 47907 Received September 28, 1987

The Cephalotaxus alkaloid cephalotaxine (1) is the parent structure of a group of C-3 α -hydroxy succinate esters designated harringtonines which have recently been evaluated in phase II clinical trials as antileukemia agents.² While 1 has been synthesized several times,³ the related alkaloids, 11-hydroxy cephalotaxine $(2)^{4a}$ and 8-oxocephalotaxine (3),^{4b} have yet to be prepared.

Our interest in this family of targets arose from the possibility of utilizing triply convergent vinyl sulfone methodology⁵ for the introduction of the requisite carbon assemblage. Treatment of vinyl sulfone 4^6 with aryllithium reagent 6 (derived from aryl bromide 5⁷ by transmetallation with t-BuLi) produces an α sulfonyl anion which is further functionalized by cannula addition to a -78 °C solution of allyl bromide in HMPA to afford adduct 7 in 84% yield (11.5 mmol scale).8 Self-immolative elimination9 of homoallyl sulfone 7 with t-BuLi at -78 °C produces a 17:1 mixture of exocyclic dienes 8 (77%) favoring the stereochemistry shown, Hydrolysis of OBO ester¹⁰ 8 provides ester 9 (99%) which

(1) Synthesis via Vinyl Sulfones. 27. For paper 26, see: Palmer, J. T.;
Fuchs, P. L. Synth. Commun. 1988, 18, 0000.
(2) (a) Ohnuma, T.; Holland, J. F. J. Clin. Oncol. 1985, 3, 604. (b)
Warrell, R. P.; Coonley, C. J.; Gee, T. S. J. Clin. Oncol. 1985, 3, 617. (c)
Neidhart, J. A.; Young, D. C.; Kraut, E.; Howinstein, B.; Metz, E. N. Cancer Res. 1986, 46, 967. (d) Ajani, J. A.; Dimery, I.; Chawla, S. P.; Pinnamaneni, K.; Benjamin, R. S.; Legha, S. S.; Krokoff, I. H. Cancer Treat. Rep. 1986, 70, 375. (e) O'Dwyer, P. J.; King, S. A.; Hoth, D. F.; Suffness, M.; Leyland-Jones, B. J. Clin. Oncol. 1986, 4, 1563.
(3) (a) Weinreb, S. M.; Auerbach, J. J. Am. Chem. Soc. 1975, 97, 2503.
(c) Semmelhack, M. F.; Chong, B. P.; Stauffer, R. D.; Rogerson, T. D.; Chong, A.; Jones, L. D. J. Am. Chem. Soc. 1975, 97, 2023. (e) Kuehne, M. E.; Bornmann, W. G.; Parsons, W. H., presented at the 194th National Meeting of the American Chemical Society, New Orleans, Louisiana, September 1987; paper 192. (f) Hudlicky, T.; Kwart, L. D.; Reed, J. W. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; John Witter Schultz (1996). Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; John Wiley and Sons, Inc.: New York, 1987; Vol. 5, pp 639-650.
(4) (a) Powell, R. G.; Madrigal, R. V.; Smith, C. R.; Mikolajczak, K. L. J. Org. Chem. 1974, 39, 676. Delfel, N. E. Phytochemistry 1980, 19, 403.

Qui-Tao, Y.; Guang-en, M.; Zhi-Heng, H. Acta Chim. Sinica 1982, 40, 539. (b) Xue, Z.; Xu, L.; Chen, D.; Huang, L. Yaoxue Xuebao 1981, 16, 752
(CA96:82690u). Xue, Z.; Sun, N. J.; Chen, D. H.; Xu, L. Z.; Chen, W. M.; Ren, L. J.; Liang, X. T.; Huang, L. Proceedings of the Sino-American Symposium, Wang, Y., Ed.; Scientific Press: Beijing, Peoples Republic of China, 1982 (CA98:194936b).

(5) For a review of this strategy, see: Fuchs, P. L.; Braish, T. F. Chem. (c) For a review of this strategy, see, rules, r. L., Brash, "A. C. Huero, Rev. 1986, 86, 903. An earlier triply convergent approach was foiled due to the failure of a key amino spirocyclization reaction (Conrad, P. C.; Kwiatkowski, P. L.; Fuchs, P. L. J. Org. Chem. 1987, 52, 586.)
 (6) Radisson, X.; Nantz, M. H.; Fuchs, P. L. Synth. Commun. 1987, 17, 522

592

(7) OBO ester 5 is prepared from piperonyl alcohol in 42% overall yield as described in the Supplementary Material.

(8) The triply convergent process was investigated with a number of other aryllithium reagents in the course of this research; these results will be sub-

sequently reported in a full paper.
(9) Kwiatkowski, P. L.; Radisson, X.; Fuchs, P. L. Synth. Commun. 1987, 17, 39

^a(a) 5, t-BuLi (2.2 equiv), THF, -78 °C; and 4, THF, -78 °C; THF: HMPA (1:1); (b) t-BuLi, THF, -78 °C \rightarrow room temperature: (c) p-TsOH (0.2 equiv), THF, H₂O, 0 °C; (d) NH₂OH, MeOH, 0 °C; (e) $n-Bu_4NIO_4$, CH_2Cl_2 , -78 °C \rightarrow room temperature.

Scheme II^a

^a(f) 6% Na(Hg), EtOH, room temperature; (g) MsCl, Et₃N, CH₂-Cl₂, 0 °C; (h) NaH, THF, room temperature; (i) H₂, 10% Pd/C, EtOH; (j) BH₃-THF, THF, reflux; MeOH, reflux.

is converted to hydroxamic acid 10 and then subjected to oxidation with tetrabutylammonium periodate as a dilute solution to generate acylnitroso intermediate 11.11

The fate of intermediate 11 is especially informative. While any 4 + 2 process requires the exocyclic diene to adopt an unfavorable s-cis conformation, the intramolecularity of the trapping process is able to overcome this limitation.¹² Products resulting from intramolecular ene reactions¹³ were not observed. The product from this reaction (71% from ester 9) is an inseparable mixture of two isomeric components which are tentatively assigned to be tetracyclic lactams 12ac and 13at. When this mixture is subjected to 6% Na(Hg) in ethanol,¹⁴ the two diastereomeric allylic

0002-7863/88/1510-2341\$01.50/0 © 1988 American Chemical Society

⁽¹⁰⁾ Corey, E. J.; Raju, N. Tetrahedron Lett. 1983, 24, 5571

 ^{(11) (}a) Keck, G. E.; Fleming, S. A. Tetrahedron Lett. 1978, 4763. (b)
 Keck, G. E. Tetrahedron Lett. 1978, 4767. (c) Iida, H.; Watanabe, Y.;
 Kibayashi, C. Tetrahedron Lett. 1984, 25, 5091. (d) Boger, D. L.; Patel, M.

^{Kibayash, C.} *1etrahedron Lett.* 1984, 25, 5091. (d) Boger, D. L.; Patel, M. J. Org. Chem. 1984, 49, 4098.
(12) For examples of intramolecular Diels-Alder reactions of dienes bearing Z-substitution, see: Palmer, J. T.; Learn, K. S.; Fuchs, P. L. Synth. Commun. 1986, 16, 1315 and references cited therein.
(13) (a) Keck, G. E.; Webb, R. Tetrahedron Lett. 1979, 1185. (b) Keck, G. E.; Webb, R.; Yates, J. B. Tetrahedron Lett. 1979, 4627. (c) Keck, G. E.; Webb, R. R. J. Am. Chem. Soc. 1981, 103, 3173. (d) Keck, G. E.; Yates, J. B. J. Org. Chem. 1982, 47, 3590. (e) Keck, G. E.; Webb, R. R. J. Org. Chem. 1982, 47, 1302.

Scheme III^a

^a(k) 1 N HCI:THF (1:1), room temperature; (1) DMSO, TFAA, Et₁N, CH₂Cl₂, -78 °C; (m) dimethoxypropane, dioxane, p-TsOH, reflux; (n) NaBH₄, MeOH, -78 °C \rightarrow room temperature.

23

22

alcohols can be separated.¹⁵ It is more expedient to simply carry the mixture through the three steps of NO bond cleavage, mesylation, and intramolecular nitrogen alkylation of the resultant lactam-mesylate. This procedure affords 46% of 14ac and 23% of 15at which are easily separable by plug filtration on silica. The major product from this sequence is assigned the expected anti-cis stereochemistry **14ac**,¹⁵ The minor product was proposed to be the anti-trans adduct 15at.¹⁵ The formation of 13at is formally the result of an intramolecular Diels-Alder reaction which requires the acyl nitroso moiety to approach the diene moiety from the opposite face of the tethering arene group. Although several examples of unusual regiochemical arrangements have been observed in the macrocyclic version of the IDA reaction¹⁶ and other examples of simultaneous formation of fused 7/6 ring systems are known,¹⁷ this observation is unprecedented in the intramo-lecular Diels-Alder literature.^{18,19} This finding would seem to necessitate critical evaluation of the implicit assumption of "syn-tether specificity" in all intramolecular reactions where a ring size of seven or greater is being formed.

Both adduct 14ac and 15at have been converted to dl-cephalotaxine (1). Hydrogenation of the $C_{6,7}$ double bond followed by lactam reduction with BH_3 -THF²⁰ provided the saturated pentacyclic amines 18ac (81%) and 19at (87%), respectively. At this stage it was possible to verify by X-ray crystallography^{21,22} that 19 (and by implication 13, 15, and 17) bore the assigned anti-trans stereochemistry (see Supplementary Material).

Culmination of the synthesis involved individual deprotection of the acetonide moieties of 18ac and 19at and to afford amino

(15) Additonal chemical and spectral evidence in support of 14ac and 15at,

and their derivatives may be found in the Supplementary Material.
(16) Corey, E. J.; Petrzilka, M. Tetrahedron Lett. 1975, 2537.
(b) Bailey,
S. J.; Thomas, E. J.; Turner, W. B. J. Chem. Soc., Chem. Commun. 1978, S. J.; Thomas, E. J.; Turner, W. B. J. Chem. Soc., Chem. Commun. 1978, 474. (c) Harkin, S. A.; Thomas, E. J. Tetrahedron Lett. 1983, 24, 5535. (d) Stork, G.; Nakamura, E. J. Am. Chem. Soc. 1983, 105, 5510. (e) Bailey, S. J.; Thomas, E. J.; Vather, S. M.; Wallis, J. J. Chem. Soc., Perkin Trans. 1 1983, 851. (f) Tapolczay, D. J.; Thomas, E. J.; Whitehead, J. W. F. J. Chem. Soc., Chem. Commun. 1985, 143. (g) Craven, A.; Tapolczay, D. J.; Thomas, E. J.; Whitehead, J. W. F. J. Chem. Soc., Chem. Commun. 1985, 143. (g) Craven, A.; Tapolczay, D. J.; Thomas, E. J.; Whitehead, J. W. F. J. Chem. Soc., Chem. Commun. 1985, 145. (h) Smith, D. A.; Sakan, K.; Houk, K. N. Tetrahedron Lett. 1986, 27, 4877. (17) (a) Wenkert, E.; Naemura, K. Synth. Commun. 1973, 3, 45. (b) Oppolzer, W.; Snowden, R. L. Helv. Chim. Acta 1981, 64, 2592. (c) Kametani, T.; Honda, T.; Shiratori, Y.; Matsumato, H.; Fukumoto, K. J. Chem. Soc., Perkin Tran. 1 1981, 1386. (d) Tuchinda, P.; Prapasiri, V.; Naengchomnong, W.; Reutrakul, V. Chem. Lett. 1984, 1427. (18) (a) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1977, 16, 10. (b)

(18) (a) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1977, 16, 10. (b) Brieger, G.; Bennett, J. N. Chem. Rev. 1980, 80, 63. (c) Fallis, A. G. Can. J. Chem. 1984, 62, 183. (d) Craig, D. Chem. Soc. Rev. 1987, 16, 187.

(19) Speculations on the relative importance of various conformational and electronic effects (including the possibility of nonsynchronous bond formation) pertaining to the generation of 13 will have to await future computational modeling. These results will be subsequentially published in a full paper.
 (20) Brown, H. C.; Choi, Y. M.; Narasimhan, S. J. Org. Chem. 1982, 47,

3153

(21) We wish to thank Dr. P. Fanwick of the Purdue chemistry department X-ray crystallography center for these results. The MICROVAX computer and diffractometer were provided by NSF Grant CHE-8615556.

(22) Tables of bond angles and distances can be found in the Supplementary Material.

diols 20ac (91%) and 21at (99%), respectively. Swern oxidation²³ of both of these diols afforded demethylcephalotaxinone 22 (75-88%)^{24,25} which was converted to cephalotaxinone 23 (70-84%) followed by borohydride reduction to afford dl-cephalotaxine (1) (97%).^{25,26} The overall yield of 1 from 4 is 14-17% considering that both isomers 12ac and 13at were utilized.

Acknowledgment. We thank the National Institute of Health (GM 32693) for their generous support of this work. We also thank the Purdue University Biological Magnetic Resonance Laboratory (NIH RR01077) for access to the 470 MHz high field proton spectrophotometer, Mark Anderson and Dr. C. R. Jones for their assistance with the 2D NMR work, and Arlene Rothwell for providing mass spectral data. Professors Ken Shea of the University of California, Irvine, and Bob Boeckman of the University of Rochester are acknowledged for their helpful discussions concerning the IDA reaction.

Supplementary Material Available: Experimental data for the preparation of OBO ester 5 from piperonyl alcohol, structures, carbon, proton, spectral data for ABD allylic alcohols and acetates, 2D NMR and spectral data for 14ac and 15at, stereoscopic and ORTEP drawings of 19at, and tables of crystal data, bond angles and distances, torsion angles, and positional parameters (32 pages). Ordering information is given on any current masthead page.

(26) Conversion of 22 to 23 was carried out by a Merck modification of the original Weinreb procedure (literature yields: 99×86%).^{3b} We thank Professor Weinreb for this information.

Poly(*n*-hexylsilyne): Synthesis and Properties of the First Alkyl Silicon [RSi], Network Polymer

Patricia A. Bianconi and Timothy W. Weidman*

AT&T Bell Laboratories Murray Hill, New Jersey 07974 Received September 21, 1987

Linear silicon-silicon bonded polymers $[R_1R_2Si]_n$ are presently the focus of intense investigation¹ and have already found applications as SiC precursors,² photoresists,³ and photoinitiators.⁴ However, little progress has been made toward the synthesis of

⁽¹⁴⁾ Keck, G. E.; Fleming, S.; Nickell, D.; Weider, P. Synth. Commun. 1979, 9, 281.

⁽²³⁾ For references on the 1,2-diol to α -diketone oxidations, see: Govindan, S. V.; Fuchs, P. L. J. Org. Chem. 1988, 53, 0000 and references cited therein.

⁽²⁴⁾ As can be seen in Scheme III, the oxidation of 20ac and 21at afford the same racemic enolized α -diketone 22. It should be noted that an alternative structure (13sc, see Supplementary Material) for the minor Diels-Alder adduct would also have given 22 after the oxidation step, underscoring the need for the X-ray determination for 19at.

⁽²⁵⁾ We wish to thank Professor Steve Weinreb of Penn State for an authentic sample of 22 and R. G. Powell of the USDA, Peoria, IL, for an authentic sample of 1.

^{(1) (}a) West, R. J. Organomet. Chem. 1986, 300, 327. (b) West, R. "Organopolysilanes" In Comprehensive Organometallic Chemistry; Abel, E., Ed.; Pergamon: Oxford, England, 1982; Chapter 9.4, pp 365-397. (c) Ziegler, J. M.; Harrah, L. A. *Macromolecules* 1987, 20, 601. (d) Miller, R. D.; Farmer, B. L.; Fleming, W.; Sooriyakumaran, R.; Rabolt, J. J. Am. Chem. Soc. 1987, 109, 2509. (e) Cotts, P. M.; Miller, R. D.; Trefonas, P. T.; West, Soc. 1987, 109, 2509. (c) Colts, F. M., Miller, K. D., Helonas, F. I., Weit, R., Fickes, G. Macromolecules 1987, 20, 1046. (f) Klingensmith, K. A.;
 Downing, J. W.; Miller, R. D.; Michl, J. J. Am. Chem. Soc. 1986, 108, 7438.
 (g) Trefonas, P.; West, R.; Miller, R. D. J. Am. Chem. Soc. 1985, 107, 2737.
 (h) Schilling, F. C.; Bovey, F. A. Ziegler, J. M. Macromolecules 1986, 19, 2200 2309

 ^{(2) (}a) West, R.; David, L. D.; Djurovich, P. I.; Yu, H.; Sinclair, R. Am. Ceram. Soc. Bull. 1983, 62, 899. (b) Yajima, S.; Hayashi, J.; Omori, M.; Okamura, K. Nature (London) 1976, 261, 683. (c) Yajima, S. Omori, M.; Hayashi, J.; Okamura, K.; Matsuzawa, T.; Liaw, C. Chem. Lett. 1976, 551. (3) (a) West, R.; Wolff, A. R.; Peterson, D. J. J. Radiation Curing 1986, A D.; Wulff, A. P.; Peterson, D. J. D. Radiation Curing 1986, Contemporation of the second se

^{13, 35. (}b) Wolff, A. R.; West, R.; Peterson, D. J. Polysilanes: A New Class of Vinyl Photoinitiators; 18th Organosilicon Symposium, Schenectady, NY,

<sup>Of Vinyl Photoinitiators; 18th Organositicon Symposium, Schenectady, NY, April 14, 1984.
(4) (a) Ziegler, J. M.; Harrah, L. A.; Johnson, A. W. SPIE Adv. Resist Technol. Proc. II 1985, 539, 166. (b) Miller, R. D.; Hofer, D.; McKean, D. R.; Willson, C. G.; West, R.; Trefonas, P. In Materials for Microlithography; Thompson, L.; Willson, C. G., Frechet, J. M. J., Eds.; ACS Symposium Series 266; American Chemical Society: Washington, DC, 1984; p 293. (c) Hofer, D. C.; Miller, R. D.; Willson, C. G.; Neureuther, A. R. SPIE Adv. Resist Technol. Res. 1964. 460. 16</sup> Technol. Proc. 1984, 469, 16.